Quantcast
Channel: Active questions tagged soft-question - Mathematics Stack Exchange
Viewing all articles
Browse latest Browse all 1252

$\left\lfloor \frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+\frac{1}{\sqrt{4}}+...+\frac{1}{\sqrt{1024}}\right\rfloor =?$

$
0
0

$$\left\lfloor \frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+\frac{1}{\sqrt{4}}+...+\frac{1}{\sqrt{1024}}\right\rfloor =?$$ I can't find $$? \leq \frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+\frac{1}{\sqrt{4}}+...+\frac{1}{\sqrt{n}} \leq ?$$ I remeber there was a sharp bound , Am i right ?
I am thankful if someone help me to find the bound , or give another idea
Last question : Is it possible to find $\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+\frac{1}{\sqrt{4}}+...+\frac{1}{\sqrt{1024}}$ by integral ?


Viewing all articles
Browse latest Browse all 1252

Trending Articles



<script src="https://jsc.adskeeper.com/r/s/rssing.com.1596347.js" async> </script>