$$\left\lfloor \frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+\frac{1}{\sqrt{4}}+...+\frac{1}{\sqrt{1024}}\right\rfloor =?$$ I can't find $$? \leq \frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+\frac{1}{\sqrt{4}}+...+\frac{1}{\sqrt{n}} \leq ?$$ I remeber there was a sharp bound , Am i right ?
I am thankful if someone help me to find the bound , or give another idea
Last question : Is it possible to find $\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+\frac{1}{\sqrt{4}}+...+\frac{1}{\sqrt{1024}}$ by integral ?
↧
$\left\lfloor \frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+\frac{1}{\sqrt{4}}+...+\frac{1}{\sqrt{1024}}\right\rfloor =?$
↧